In Chernobyl, nuclear reactions start to burn again

In Chernobyl, nuclear reactions start to burn again

In Chernobyl

Fission reactions at the former nuclear power plant in Chernobyl are increasing and scientists are keeping an eye on the situation. Here's what to do to avoid another accident

(Photo: Anadolu Agency / Getty Images) A ​​few days after the 35th anniversary of the worst nuclear accident in history, the fission reactions of the Chernobyl power plant start to rise again, burning masses of uranium fuel buried deep inside reactor number 4, the same one that exploded on April 26, 1986. Sensors at the nuclear power plant are monitoring an increasing number of neutrons, a fission signal, in the reactor's inaccessible chambers and now Ukrainian scientists are trying to figure out whether the reactions can subside on their own or, at worst, require extraordinary interventions to avoid another accident.

As reported by Science magazine, the Institute for Safety Problems of Nuclear Power Plants (Ispnpp) in Kiev, Ukraine, spoke about it a few days ago during a conference in occasion of the anniversary of the Chernobyl nuclear disaster. "There are many uncertainties," Maxim Saveliev of ISPNPP told Science. "And we still can't rule out the possibility of an accident." The number of neutrons is slowly increasing, adds Saveliev, suggesting that we need to understand as soon as possible how we can avoid this threat.

Browse gallery We remind you that in November 2016 a new sarcophagus, the New Safe Confinement (Nsc), went to cover reactor 4 allowing to dismantle the previous structure (built by the Soviet authorities one year after the accident and intended for removal) and to start the process of removing the radioactive material, the corium (or fuel containin material, Fcm), similar to lava, which is created by the nuclear reactor during the melting of the core and consists of a mix of oxide of uranium, zirconium alloy, concrete and serpentinite, and which slipped under the reactor container (particularly in chamber 305/2) and then solidified into structures, such as the famous formation called Elephant Foot, which is located under the bottom of the reactor.

As Science tells us, since the New Safe Confinement was installed, the number of neutrons in most areas has remained stable, but has started to rise in some places, here doubling in four years in room 305/2. "It's like embers in a barbecue," said Neil Hyatt, a chemist at the University of Sheffield. "The fear is that the fission reaction will accelerate exponentially, leading to an uncontrolled release of nuclear energy." A challenge also complicated by the fact that the high levels of radiation in the room 305/2 prevent them from approaching in order to install the sensors: one solution, explain the ISPNPP experts, could be to develop a robot capable of withstanding the intense radiation and insert boron cylinders into the Fcm, which would act as a control and absorb neutrons.


Medicine - 26 Apr

Chernobyl, 35 years later: what do we know about the effects of the nuclear disaster on health?

adsJSCode ("nativeADV1", [[2,1]], "true", "1", "native", "read-more", "1"); Environment - 14 Apr

Parliament wants new analyzes to choose where to build nuclear waste repository

adsJSCode ("nativeADV2", [[2,1]], "true", "2 "," native "," read-more "," 2 "); Environment - Apr 13th

Japan to dispose of contaminated Fukushima waters in the Pacific

Topics

Chernobyl nuclear energy globalData.fldTopic = "Chernobyl, nuclear energy"

Could be interested too



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.



‘It’s like the embers in a barbecue pit.’ Nuclear reactions are smoldering again at Chernobyl

Since 2016, the canopylike New Safe Confinement has sealed off and protected the ruined Chernobyl reactor.

Pyotr Sivkov/TASS/Getty Images

Thirty-five years after the Chernobyl Nuclear Power Plant in Ukraine exploded in the world’s worst nuclear accident, fission reactions are smoldering again in uranium fuel masses buried deep inside a mangled reactor hall. “It’s like the embers in a barbecue pit,” says Neil Hyatt, a nuclear materials chemist at the University of Sheffield. Now, Ukrainian scientists are scrambling to determine whether the reactions will wink out on their own—or require extraordinary interventions to avert another accident.


Sensors are tracking a rising number of neutrons, a signal of fission, streaming from one inaccessible room, Anatolii Doroshenko of the Institute for Safety Problems of Nuclear Power Plants (ISPNPP) in Kyiv, Ukraine, reported last week during discussions about dismantling the reactor. “There are many uncertainties,” says ISPNPP’s Maxim Saveliev. “But we can’t rule out the possibility of [an] accident.” The neutron counts are rising slowly, Saveliev says, suggesting managers still have a few years to figure out how to stifle the threat. Any remedy he and his colleagues come up with will be of keen interest to Japan, which is coping with the aftermath of its own nuclear disaster 10 years ago at Fukushima, Hyatt notes. “It’s a similar magnitude of hazard.”


The specter of self-sustaining fission, or criticality, in the nuclear ruins has long haunted Chernobyl. When part of the Unit Four reactor’s core melted down on 26 April 1986, uranium fuel rods, their zirconium cladding, graphite control rods, and sand dumped on the core to try to extinguish the fire melted together into a lava. It flowed into the reactor hall’s basement rooms and hardened into formations called fuel-containing materials (FCMs), which are laden with about 170 tons of irradiated uranium—95% of the original fuel.


The concrete-and-steel sarcophagus called the Shelter, erected 1 year after the accident to house Unit Four’s remains, allowed rainwater to seep in. Because water slows, or moderates, neutrons and thus enhances their odds of striking and splitting uranium nuclei, heavy rains would sometimes send neutron counts soaring. After a downpour in June 1990, a “stalker”—a scientist at Chernobyl who risks radiation exposure to venture into the damaged reactor hall—dashed in and sprayed gadolinium nitrate solution, which absorbs neutrons, on an FCM that he and his colleagues feared might go critical. Several years later, the plant installed gadolinium nitrate sprinklers in the Shelter’s roof. But the spray can’t effectively penetrate some basement rooms.


Chernobyl officials presumed any criticality risk would fade when the massive New Safe Confinement (NSC) was slid over the Shelter in November 2016. The €1.5 billion structure was meant to seal off the Shelter so it could be stabilized and eventually dismantled. The NSC also keeps out the rain, and ever since its emplacement, neutron counts in most areas in the Shelter have been stable or are declining.


But they began to edge up in a few spots, nearly doubling over 4 years in room 305/2, which contains tons of FCMs buried under debris. ISPNPP modeling suggests the drying of the fuel is somehow making neutrons ricocheting through it more, rather than less, effective at splitting uranium nuclei. “It’s believable and plausible data,” Hyatt says. “It’s just not clear what the mechanism might be.”


The threat can’t be ignored. As water continues to recede, the fear is that “the fission reaction accelerates exponentially,” Hyatt says, leading to “an uncontrolled release of nuclear energy.” There’s no chance of a repeat of 1986, when the explosion and fire sent a radioactive cloud over Europe. A runaway fission reaction in an FCM could sputter out after heat from fission boils off the remaining water. Still, Saveliev notes, although any explosive reaction would be contained, it could threaten to bring down unstable parts of the rickety Shelter, filling the NSC with radioactive dust.


Addressing the newly unmasked threat is a daunting challenge. Radiation levels in 305/2 preclude getting close enough to install sensors. And spraying gadolinium nitrate on the nuclear debris there is not an option, as it’s entombed under concrete. One idea is to develop a robot that can withstand the intense radiation for long enough to drill holes in the FCMs and insert boron cylinders, which would function like control rods and sop up neutrons. In the meantime, ISPNPP intends to step up monitoring of two other areas where FCMs have the potential to go critical.


The resurgent fission reactions are not the only challenge facing Chernobyl’s keepers. Besieged by intense radiation and high humidity, the FCMs are disintegrating—spawning even more radioactive dust that complicates plans to dismantle the Shelter. Early on, an FCM formation called the Elephant’s Foot was so hard scientists had to use a Kalashnikov rifle to shear off a chunk for analysis. “Now it more or less has the consistency of sand,” Saveliev says.


Ukraine has long intended to remove the FCMs and store them in a geological repository. By September, with help from European Bank for Reconstruction and Development, it aims to have a comprehensive plan for doing so. But with life still flickering within the Shelter, it may be harder than ever to bury the reactor’s restless remains.





Powered by Blogger.